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Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface temper-

ature) from a collection of pointwise paleoclimate proxy datasets. The climate fields can provide rich information on climate

dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are complex and time-

consuming, as they involve: (i) preprocessing of the proxy records, climate model simulations, and instrumental observations,

(ii) application of one or more statistical methods, and (iii) analysis and visualization of the reconstruction results. Histori-5

cally, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by non-specialists.

This article presents an open-source and object-oriented Python package called cfr that aims to make CFR workflows easy

to understand and conduct, saving climatologists from technical details and facilitating efficient and reproducible research. It

provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and visualization, proxy system

modeling, and modularized workflows for multiple reconstruction methods, enabling methodological intercomparisons within10

the same framework. The package is supported with an extensive documentation of the application interface (API) and a grow-

ing number of tutorial notebooks illustrating its usage. As an example, we present two cfr-driven reconstruction experiments

using the PAGES 2k temperature database: applying the last millennium reanalysis (LMR) paleoclimate data assimilation

(PDA) framework and the Graphical Expectation-Maximization (GraphEM) algorithm, respectively.

1 Introduction15

Paleoclimate reconstructions provide critical context for recent changes and out-of-sample validation of climate models (Masson-

Delmotte et al., 2013). Site-based reconstructions have been used to infer climate change with the assumption that site-based

paleoclimate records (i.e., proxies) can represent the regional or even global climate variations to some extent (e.g., Shakun

et al., 2012; Marcott et al., 2013), yet such approaches may lead to conclusions biased to specific sites (Bova et al., 2021; Os-

man et al., 2021). Climate field reconstruction (CFR), in contrast, aims to optimally combine the available proxy data and infer20

the multivariate climate variability over the whole domain of interest, hence alleviating the biases in site-based reconstruction

methods, and has become the emerging approach to studying spatiotemporal climate history and model-data comparisons (e.g.
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Tingley et al., 2012; Neukom et al., 2019a; Tierney et al., 2020; Zhu et al., 2020; Osman et al., 2021; King et al., 2021; Zhu

et al., 2022).

Existing CFR methods can be classified into three main categories. The first category is based on regression models, which25

fit climate variables (e.g., temperature, pressure, precipitation, and so on) onto proxy observations using some variant of least

squares (e.g., Mann et al., 1998, 1999; Evans et al., 2002; Cook et al., 2004, 2010; Tingley et al., 2012; Smerdon and Pollack,

2016). A more formal approach is based on Bayesian hierarchical models, which explicitly model the various levels of the

relationship linking climate processes to proxy observations, and invert the proxy-climate relation via Bayes’ theorem (e.g.,

Tingley and Huybers, 2010a, b, 2013). Both approaches rely on the covariance structure between proxies and climate variables30

that is estimated from observational data over a calibration period. The third is based on paleoclimate data assimilation (PDA,

e.g., Dirren and Hakim, 2005; Goosse et al., 2006b; Ridgwell et al., 2007; Steiger and Hakim, 2016; Hakim et al., 2016; Tardif

et al., 2019), which follows a similar idea to the previous approaches, but with a critical difference that the proxy-climate

covariance matrix is estimated from climate model simulations instead of observational data, as such spatial, multivariate

relationships are available and subject to dynamical constraints. As a result, PDA methods can, in principle, estimate any35

field simulated in the model prior, though the reconstruction quality will be a function of how strongly those variables can be

constrained by paleo observations.

Since some CFR methods have been shown to depend sensitively on the input data (Wang et al., 2015), it is imperative

to apply more than one method to the same problem to establish a result’s robustness. This has heretofore been difficult, as

most CFR workflows are complex, possibly involving the selection and processing of proxy records, the processing of grid-40

ded climate model simulation and instrumental observation data, the calibration of proxy system models (PSMs, Evans et al.,

2013), the setup and execution of the specific reconstruction algorithms, as well as the validation and visualization of the

reconstruction results. Each of these steps can lead to a long decision tree (Bürger et al., 2006; Büntgen et al., 2021), com-

plicating comparisons. Furthermore, these steps require a comprehensive knowledge of proxies, data analysis and modeling,

reconstruction methods, as well as scientific programming and visualization, and can be time-consuming and error-prone for45

climatologists not familiar with every related discipline. Here we present a Python package called cfr that is designed to make

CFR workflows easy to understand and perform, with the aim of improving the efficiency and reproducibility of CFR-related

research.

The paper is organized as follows: Sect. 2 presents the design philosophy of the package. Sect. 3 provides a primer for

the two classes of reconstruction methods presently included in the package. Sect. 4 introduces the architecture and major50

modules. Sect. 5 and 6 describe the reconstruction workflows of two methods: paleoclimate data assimilation and graphical

expectation-maximization, respectively. A summary and an outlook are provided in Sect. 7.

2 The cfr design philosophy

cfr aims to provide intuitive and effective workflows for climate field reconstruction with the following features:
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Reproducible Computational Narratives. Although a traditional script-based style is also supported, cfr is natively de-55

signed to be used in the context of reproducible computational narratives known as Jupyter notebooks (Kluyver et al., 2016),

which provides an interactive programming laboratory for data analysis and visualization, and has become the new standard

for analysis-driven scientific research.

Intuitive. cfr is coded in the object-oriented programming (OOP) style, which provides intuitive ways to manipulate data

objects. For instance, each proxy record object (ProxyRecord) supports a collection of methods for analysis and visualization,60

and multiple proxy record objects can be literally added together (by the operator “+”) to form a proxy database object

(ProxyDatabase) that supports another collection of methods specific to a proxy database. The so-called “method cascading”

is also supported by design to allow for smooth processing of the data objects in one line of code combining multiple processing

steps.

Flexible. cfr provides multiple levels of modularization. It supports object-specific workflows, which provide in-depth65

operations of the data objects, as well as workflows specific to reconstruction tasks, enabling macroscopic manipulations of

the reconstruction-related tasks.

Community-based. cfr is built upon community efforts on (paleoclimate) data analysis, modeling, and visualization, in-

cluding but not limited to NumPy (van der Walt et al., 2011), SciPy (Virtanen et al., 2020), Pandas (McKinney, 2010), Xarray

(Hoyer and Hamman, 2017), Matplotlib (Hunter, 2007), Cartopy (Met Office, 2010), Seaborn (Waskom, 2021), Plotly (Plotly70

Technologies Inc., 2015), Statsmodels (Seabold and Perktold, 2010), Pyleoclim (Khider et al., 2022), and PRYSM (Dee et al.,

2015). This makes the codebase of cfr not only concise and efficient, but also ready for grassroots open development.

User-friendly. cfr is designed to be easy to install and use. It is supported with an extensive documentation on the instal-

lation and the essential application interface (API), as well as a growing number of tutorial notebooks illustrating its usage. In

addition, the commonly used proxy databases and gridded climate data for CFR applications can be conveniently fetched and75

loaded from cloud with cfr’s data fetching functionality.

3 Reconstruction Methods

At the moment, cfr supports two classes of reconstruction methods, though it is designed to accommodate many more.

3.1 Offline Paleoclimate Data Assimilation (PDA)

In recent years, paleoclimate data assimilation (PDA) has provided a novel way to reconstruct past climate variations (Jones and80

Widmann, 2004; Goosse et al., 2006a; Gebhardt et al., 2008; Widmann et al., 2010; Goosse et al., 2010; Annan and Hargreaves,

2013; Steiger et al., 2014; Hakim et al., 2016; Franke et al., 2017; Acevedo et al., 2017; Steiger et al., 2018; Tierney et al., 2020;

Osman et al., 2021; King et al., 2021; Zhu et al., 2022; Valler et al., 2022; Annan et al., 2022). PDA proceeds by drawing from

a prior distribution of climate states, which it updates by comparison with observations (Wikle and Berliner, 2007). The prior

comes from physics-based model simulations, typically from general circulation models experiments covering past intervals85

(e.g. Otto-Bliesner et al., 2016).
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The observations, in this case, are the values of climate proxies, which indirectly sense the climate field(s) of interest (e.g.

surface air temperature, precipitation, wind speed). The link between latent climate states and paleo proxy observations is

provided by observation operators (one for each proxy type), which in this case are called proxy system models (PSMs, Evans

et al., 2013). PSMs are low-order representations of the processes that translate climate conditions to the physical or chemical90

observations made on various proxy archives, such as tree rings, corals, ice cores, lake and marine sediments, or cave deposits

(speleothems).

cfr implements a version of a data assimilation algorithm known as an offline ensemble Kalman filter (EnKF), popularized

in the paleoclimate context by Steiger et al. (2013); Hakim et al. (2016); Tardif et al. (2019). The code for the EnKF solver is

derived from the Last Millennium Reanalysis (LMR) codebase (https://github.com/modons/LMR) and was streamlined with95

utilities from the cfr package. The output of this algorithm is a time-evolving distribution (the “posterior”) quantifying the

probability of particular climate states over time.

PDA can reconstruct as many climate fields as are present in the prior, though they will not be equally well constrained by

the observations. Prior values are usually obtained by drawing n (100 to 200) samples at random from a model simulation at

the outset. This precludes sampling variations, ensuring that all variability in the posterior is driven by the observations.100

Uncertainty quantification is carried out by random sampling of a subset of the proxy set (typically 75%) for separate

training and validation. This process is typically repeated MC (20-50) times, yielding so many Monte-Carlo “iterations” of the

reconstruction, each of which contains a unique set of n samples from the prior. The posterior is therefore composed of contains

n×MC trajectories, typically numbering in the thousands. For scalar indices like the global mean surface temperature or the

North Atlantic Oscillation index, the entire ensemble is exported. However, for climate fields, this added dimension would105

yield unacceptably large files. As a compromise, for each field variable, cfr by default exports the ensemble mean of the n

reconstructions during each Monte-Carlo iteration, and the final output thus contains MC ensemble members. In case the full

ensemble is needed, cfr also provides a switch to export the entire n×MC members of the reconstructed fields.

3.2 Graphical Expectation Maximization (GraphEM)

GraphEM (Guillot et al., 2015, hereafter G15) is a variant of the popular Regularized Expectation-Maximization (RegEM)110

algorithm introduced by Schneider (2001), and popularized in the paleoclimate reconstruction context by Michael Mann and

co-authors (Rutherford et al., 2005; Mann et al., 2007; Mann et al., 2008, 2009; Emile-Geay et al., 2013a, b). Like RegEM,

GraphEM mitigates the problems posed to the traditional EM algorithm (Dempster et al., 1977) by the presence of rank-

deficient covariance matrices, due the "large p, small n" problem: climate fields are observed over large grids (e.g. a 5◦× 5◦

global grid contains nearly 2500 grid points) but a comparatively short time (say 170 samples for the period 1851-2020).115

GraphEM addresses this issue by exploiting the conditional independence relations inherent to a climate field (Vaccaro et al.,

2021): namely, surface temperature at a given gridpoint is conditionally independent of the vast majority of the rest of the

grid, except for a handful of neighbors, typically a fraction of a percent of the total grid size. Effectively, this reduces the

dimensionality of the problem, to the point that the estimation is well-posed, and the various submatrices of the covariance

matrix Σ are invertible and well estimated.120
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The degree of regularization is determined by the density of non-zero entries in the inverse covariance matrix Ω, which can

be interpreted as a graph (Lauritzen, 1996). The more zero entries in this matrix, the sparser the graph, and the more damped

the estimation. The fuller the graph, the more connections are captured between distant locales, but the more potential there is

for a non-invertible covariance matrix, resulting in unphysical values of the reconstructed field. Therefore, the quality of the

GraphEM estimation hinges on an appropriate choice of graph, which is a compromise between the two poles described above.125

In GraphEM, the climate graph may be identified in two ways:

Neighborhood graphs are the simplest method, identifying as neighbors all gridpoints that lie within a certain radius (say,

1000 km) of a given location. The smaller the radius, the sparser the graph; the larger the radius, the fuller the graph.

Neighborhood graphs take no time to compute, but their structure is fairly rigid, as its sole dependence on distance means

that it cannot exploit anisotropic features like land/ocean boundaries, orography, or teleconnection patterns.130

Graphical LASSO (GLASSO) is an ℓ1 penalized likelihood method introduced by Friedman et al. (2008) in the context of

high-dimensional covariance estimation. In cfr, its level of regularization is controlled by a sparsity parameter, which

explicitly targets the proportion of non-zero entries in Ω (see G15 for details). The smaller the sparsity parameter, the

sparser the graph, and the more damped the estimate. A major advantage of GLASSO is that it can extract non-isotropic

dependencies from a climate field (Vaccaro et al., 2021).135

G15 found that for suitable choices of the sparsity parameter, the GLASSO approach yielded much better estimates of

the temperature field than the neighborhood graph method. However, the GLASSO approach has two main challenges: (1)

the graph optimization can be computationally intensive and (2) it requires a complete data matrix to operate. In the case of

paleoclimate reconstructions, this means that proxy series and instrumental observations of the climate field of interest must

not contain any missing values over the entire calibration period (e.g. 1850-2000).140

To address the first challenge, cfr uses a greedy algorithm to find the optimal graph, as proposed by G15. To address the

second challenge, we use GraphEM with neighborhood graphs to obtain a first guess for the climate field, use it to run GLASSO

and obtain a more flexible graph, which is then used within GraphEM on the original (incomplete) data matrix (Section 6).

Another advantage of this method is that it provides GraphEM (an iterative method) with a reasonable first guess for the

parameters of the distribution (µ0,Σ0), which can considerably speed up convergence. We call this approach the "hybrid"145

method in cfr.

3.3 Generalization

The cfr framework is designed to be quite general, and can in principle accommodate any CFR method. PDA and GraphEM

are only two of the methods used, for instance, in Neukom et al. (2019b), which are themselves a subset of all possible CFR

methods. The two options included at this stage, based on completely different assumptions and methodologies, provide a way150

to test the method-dependence of a given result. This is critical, as some CFR methods have been shown to depend sensitively

on the input data (Wang et al., 2015). More methods will be added into the package in subsequent versions. We also welcome
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of contributions from the community for the inclusion of more other Python-based CFR methods. A contributing guide can be

accessed at: https://fzhu2e.github.io/cfr/cg-overview.html (Zhu et al., 2023c).

4 The cfr architecture155

To make CFR workflows intuitive and flexible, cfr takes the object-oriented programming (OOP) approach and defines

Python classes describing and organizing the essential data objects along with their connections, such as proxy records, proxy

databases, gridded climate fields, as well as the PSMs and reconstruction method solvers, under different modules, which are

described in the following sections.

4.1 proxy: proxy data processing and visualization160

The proxy module contains a ProxyRecord class and a ProxyDatabase class, providing a collection of operation methods

for proxy data processing and visualization, which is fundamental for paleoclimate data analysis.

The ProxyRecord class provides a structure to store, process, and visualize a proxy record. The essential attributes and

methods are listed in Table 1. For instance, suppose we have a ProxyRecord object named pobj, then calling pobj.plot()

will visualize the proxy time series along with its location depicted on a map (Fig. 1). Basic metadata stored as its attributes165

will be displayed on the plot, including the proxy ID, the location in latitude and longitude, the proxy type, and the proxy

variable with the unit, if available. There are methods for basic processing: calling pobj.slice() will slice the record based

on the given timespan (while “index slicing” is also supported, please refer to the notebook tutorial: https://fzhu2e.github.io/

cfr/notebooks/proxy-ops.html#Slice-a-ProxyRecord (Zhu et al., 2023c) for the details), calling pobj.annualize() will annu-

alize/seasonalize the record based on the specified list of months, and calling pobj.center() or pobj.standardize() will170

center or standardize the value axis of the record. There are also methods related to proxy system modeling: the get_clim()

method helps to get the grid point value from a gridded climate field nearest to the record, after which the get_pseudo()

method can be called to generate the pseudoproxy estimate. To support intuitive conversions between data objects, multiple

ProxyRecord objects can be added together with the “+” operator to form a ProxyDatabase that we introduce in the next sec-

tion (i.e., pdb = pobj1 + pobj2 + ...). In addition, with the fetch method, proxy databases can be conveniently fetched175

from the cloud. For instance, pdb = cfr.ProxyDatabase.fetch('PAGES2kv2') will remotely load the PAGES 2k phase 2

database (PAGES 2k Consortium, 2017), and pdb = cfr.ProxyDatabase.fetch('pseudoPAGES2k/ppwn_SNRinf_rta')

will fetch and load the base version of the “pseudoPAGES2k” database (Zhu et al., 2023a, b). Its argument can also be an

arbitrary URL to a supported file stored in the cloud to support flexible loading of the data. If the fetch method is called

without an argument, the supported predefined entries will be printed out to give a hint to the users.180
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Table 1. The essential attributes and methods of cfr.ProxyRecord.

Attributes Description Methods Description

pid The unique proxy ID. plot() Plot the record time series.

time The time axis. slice() Slice the record based on a give timespan.

value The value axis. + Combine multiple ProxyRecord’s as a ProxyDatabase.

ptype The proxy type. annualize() Annualize/seasonalize the proxy record.

lat, lon, elev The latitude, longitude, and elevation. get_clim() Get climate data nearest to the record.

seasonality The seasonality. get_pseudo() Generate the pseudoproxy estimate.

dt The median of time differences. center() Center the record against a reference timespan.

tags A tag set for filtering purposes. standardize() Standardize the value axis of the record.
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Figure 1. A visualization example of a coral Sr/Ca record using cfr.ProxyRecord.plot().

The ProxyDatabase class provides a structure to organize multiple ProxyRecord objects at once. The essential attributes

and methods are listed in Table 2. For example, suppose we have a ProxyDatabase object named pdb, then calling pdb.plot()

will visualize the proxy database on a static map (Fig. 2 top), along with the count of the records by proxy type if the argu-

ment plot_count=True is set (Fig. 2 middle). In contrast, calling pdb.plotly() will visualize the proxy database on an

interactive map that allows query of the location and proxy type of each record by hovering a mouse pointer (Fig. 2 bottom).185

The from_df() and to_df() methods allow data input and output in the form of a pandas.DataFrame, which is a more

common format for tabular data. The filter() method offers a handy tool to filter the proxy database in flexible ways, such

as by proxy types, latitude/longitude ranges, center location and radius distance, and arbitrary tag combinations. For more de-

tails, please refer to the notebook tutorial on this topic: https://fzhu2e.github.io/cfr/notebooks/pp2k-pdb-filter.html (Zhu et al.,
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2023c). To support intuitive conversions between data objects, multiple ProxyRecord objects and/or ProxyDatabase objects190

can be added together with the “+” operator to form a ProxyDatabase (i.e., pdb = pdb1 + pobj1 + ...), and multiple

ProxyRecord objects can be removed from a ProxyDatabase with the “−” operator (i.e., pdb = pdb1 - pobj1 - ...).

ProxyDatabase also comes with find_duplicates() and squeeze_dups() to locate and remove duplicated records when

adding multiple databases together.

Table 2. The essential attributes and methods of cfr.ProxyDatabase.

Attributes Description Methods Description

records The dictionary of the records. plot() Plot the database on a static map.

pids The list of proxy IDs. plotly() Plot the proxy database on an interactive map.

nrec The number of the proxy records. from_df() Load the database from a pandas.DataFrame.

type_dict The count of each proxy type. to_df() Convert the database to a pandas.DataFrame.

lats, lons Location information in lists. filter() Filter the database by supported conditions.

+ Combine multiple ProxyRecords’s/ProxyDatabase’s together.

− Removing multiple ProxyRecord’s from a ProxyDatabase.

fetch() Fetch and load the database from cloud.

find_dupilicates() Find duplicated records.

squeeze_dups() Remove duplicated records and keep one.
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Figure 2. Visualization examples of the PAGES 2k version 2 multiproxy database (PAGES 2k Consortium, 2017) using

cfr.ProxyDatabase.plot() and cfr.ProxyDatabase.plotly().
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4.2 climate: gridded climate data processing and visualization195

The climate module comes with a ClimateField class that is essentially an extension of xarray.DataArray to better fit

CFR applications. It contains a collection of methods for processing and visualizing the gridded climate model simulation and

instrumental observation data.

The essential attributes and methods are listed in Table 3. For instance, suppose we have a ClimateField object named fd,

then calling fd.get_anom() will return the anomaly field against a reference time period, and calling fd.get_anom().plot()200

(an example of method cascading) will plot the anomaly field on a map (Fig. 3). The spatial resolution and coverage of the

field can be altered by calling fd.regrid() and fd.crop(). Since ClimateField is based on xarray.DataArray, the slice

method applies similarly; however, we augmented the original method to more robustly account for time and calendars in

the paleoclimate context. For more details on time slicing, please refer to the notebook tutorial: https://fzhu2e.github.io/cfr/

notebooks/climate-ops.html#Time-slicing (Zhu et al., 2023c). Similar to a ProxyRecord, a ClimateField with monthly time205

resolution can be annualized/seasonalized by calling the annualize() method with a specified list of months. To support

convenient calculation of many popular climate indices such as global mean surface temperature (GMST) and NINO3.4,

the geo_mean() method calculates the “cos-lat” weighted geospatial mean over a region defined by the latitude and longitude

range. To support quick validation of a reconstructed field, the compare() method facilitates the comparison against a reference

field in terms of a metric such as the gridpoint-wise linear correlation (r), coefficient of determination (R2), or coefficient of210

efficiency (CE). Lastly, the load_nc() and to_nc() methods allow loading and writing gridded datasets in the netCDF format

(Rew and Davis, 1990), while the fetch method can be used to conveniently load gridded datasets from the cloud. For instance,

fd = cfr.ClimateField.fetch('iCESM_past1000historical/tas') will fetch and load the iCESM simulated surface

temperature field since 850 CE (Brady et al., 2019). Similar to that of ProxyDatabase, the argument can also be an arbitrary

URL to a netCDF file hosted in the cloud, and calling without an argument will print out supported predefined entries.215

Table 3. The essential attributes and methods of cfr.ClimateField.

Attributes Description Methods Description

da The data in xarray.DataArray. plot() Plot the climate field on a map.

get_anom() Calculate the anomaly field against a reference time period.

regrid() Regrid the field.

crop() Crop the field.

annualize() Annualize/seasonalize the field.

geo_mean() Calculate the geospatial mean over a region.

compare() Compare against a reference field.

load_nc() Load the field from a netCDF file.

to_nc() Output the field to a netCDF file.

fetch() Fetch and load the gridded climate field from cloud.
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Figure 3. A visualization example of an iCESM simulated surface temperature anomaly field using cfr.ClimateField.plot().

4.3 ts: time series processing and visualization

The ts module is for time series processing and visualization in general, and it comes with an EnsTS class to handle ensemble

time series. In specific, the EnsTS class is mainly designed to visualize and validate the reconstructed time series such as GMST

and NINO3.4, and its essential attributes and methods are listed in Table 4. The plot() method visualizes each member of the

ensemble time series, while the plot_qs() method plots only the quantile envolopes (Fig. 4). Similar to a ClimateField, the220

compare() method is useful for a quick validation of the ensemble median against a reference time series. The fetch method

is supported as well. For instance, bc09 = cfr.ProxyDatabase.fetch('BC09_NINO34') will remotely load the NINO3.4

estimate by Bunge and Clarke (2009).

Table 4. The essential attributes and methods of cfr.EnsTS.

Attributes Description Methods Description

time The time axis. plot() Plot each of the ensemble time series.

value The ensemble value in matrix. plot_qs() Plot the quantile envolopes.

nt The temporal length. compare() Compare against a reference time series.

nEns The ensemble size. fetch() Fetch and load the time series data from cloud.
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Figure 4. A visualization example of the LMR v2.1 ensemble global mean surface temperature (GMST) (Tardif et al., 2019) using

cfr.EnsTS.plot_qs().

4.4 psm: proxy system modeling

The psm module incorporates classes for multiple popular proxy system models (PSMs, Evans et al., 2013), including a uni-225

variate linear regression model (Hakim et al., 2016; Tardif et al., 2019) (Linear), a bivariate linear regression model (Hakim

et al., 2016; Tardif et al., 2019) (Bilinear), a tree-ring width model VS-Lite (Tolwinski-Ward et al., 2011, 2013; Zhu and

Tolwinski-Ward, 2023) (VSLite), a simple lake varve thickness model (Lake_VarveThickness), as well as the ice core δ18O

model (Ice_d18O), coral δ18O model (Coral_d18O), coral Sr/Ca ratio model (Coral_SrCa) adopted from PRYSM (Dee et al.,

2015), among which Linear and Bilinear are commonly used in paleoclimate data assimilation (PDA), and others are more230

useful to generate pseudoproxy emulations (Zhu et al., 2023a, b). A summary of available PSMs in cfr is listed in Table 5.

Taking the default univariate linear regression model (Linear) as a typical example, the essential attributes and methods

are listed in Table 6. As illustrated in the notebook tutorial https://fzhu2e.github.io/cfr/notebooks/psm-linear.html (Zhu et al.,

2023c), a Linear PSM object can be initialized with a ProxyRecord object, and by calling the calibrate() method, the

PSM utilizes the proxy measurement and the nearest instrumental observation to calibrate the regression coefficients over235

the instrumental period, with the option to test multiple seasonality candidates, yielding an optimal regression model. Then

by calling the forward() method, the calibrated model will forward the nearest model simulated climate and generate the

pseudoproxy estimate, translating the climate signal to the proxy space. For more illustrations of the other available PSMs,

please refer to https://fzhu2e.github.io/cfr/ug-psm.html (Zhu et al., 2023c).
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Table 5. A summary of the available proxy system models (PSMs) in cfr.

PSM name Class References

Univariate Linear cfr.psm.Linear Hakim et al. (2016); Tardif et al. (2019)

Multivariate Linear cfr.psm.BiLinear Hakim et al. (2016); Tardif et al. (2019)

VS-Lite cfr.psm.VSLite Tolwinski-Ward et al. (2011, 2013)

Lake Varve Thickness cfr.psm.Lake_VarveThickness Zhu et al. (2023a)

Ice Core δ18O cfr.psm.Ice_d18O Dee et al. (2015)

Coral δ18O cfr.psm.Coral_d18O Dee et al. (2015)

Coral Sr/Ca cfr.psm.Coral_SrCa Dee et al. (2015)

Table 6. The essential attributes and methods of the cfr.psm.Linear proxy system model (PSM).

Attributes Description Methods Description

pobj The ProxyRecord object. calibrate() Calibrate the PSM.

climate_required The list of variable names of the required climate input. forward() Forward the calibrated model.

4.5 da: data assimilation240

The da module implements the data assimilation algorithms, currently including the ensemble Kalman filter (Kalman, 1960;

Evensen, 2009) used in the last millenium reanalysis (LMR, Hakim et al., 2016; Tardif et al., 2019) framework. The class is

named EnKF and Table 7 lists its essential attributes and methods. Direct operations on this class are not recommended unless

for debugging purposes. It is designed to be called internally by the ReconJob class that we introduce later for a high-level

control of the workflow.245

Table 7. The essential attributes and methods of cfr.da.EnKF.

Attributes Description Methods Description

prior The dictionary of prior fields. gen_prior_samples() Generate prior samples.

pdb_assim The assimilated ProxyDatabase. gen_Ye() Generate the forward estimates.

seed The seed for randomization. gen_Xb() Generate the background matrix.

nens The ensemble size. update_yr() Update a specific year utilizing the EnKF solver.

recon_vars The names of the reconstructed variables. run() Run the EnKF solver through multiple years.
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4.6 graphem: Graphical Expectation Maximization

The graphem module implements the GraphEM algorithm (Guillot et al., 2015). The class is named GraphEM and Table 8 lists

its essential attributes and methods. Direct operations on this class are not recommended unless for debugging purposes. It is

usually called by the ReconJob class that we introduce later for a high-level control of the workflow.

Table 8. The essential attributes and methods of cfr.graphem.GraphEM.

Attributes Description Methods Description

field_r The reconstructed field. fit() Estimate the parameters and reconstruct the climate field.

proxy_r The reconstructed proxy matrix.

calib Indices of the calibration period.

4.7 reconjob: reconstruction workflow management250

The reconjob module provides pre-defined reconstruction workflows attached to the class ReconJob, as listed in Table 9. We

will illustrate the usage of these methods in detail in the sections on PDA and GraphEM workflows.

Table 9. The essential attributes and methods of cfr.ReconJob.

Attributes Description Methods Description

configs The dictionary of configurations. load_proxydb() Load the proxy database.

proxydb The loaded ProxyDatabase. filter_proxydb() Filter the proxy database.

prior The dictionary of prior fields. annualize_proxydb() Annualize the proxy database.

obs The dictionary of instrumental observations. split_proxydb() Split the proxy database.

load_clim() Load the simulated or observed climate data.

annualize_clim() Annualize the climate data.

regrid_clim() Regrid the climate data.

crop_clim() Crop the climate data.

calib_psms() Calibrate the PSMs for each proxy record.

forward_psms() Forward the PSMs for each proxy record.

run_da() Run the DA solver.

run_da_mc() Run DA with Monte-Carlo iterations.

prep_graphem() Prepare data for the GraphEM solver.

run_graphem() Run the GraphEM solver.
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4.8 reconres: result analysis and visualization

The reconres module focuses on postprocessing and visualization of the reconstruction results. It contains a ReconRes class

that helps to load the reconstruction outputs stored in netCDF files from a given directory path, and organize the data in the255

form of either ClimateField or EnsTS. The essential attributes and methods of ReconRes are listed in Table 10. We will

illustrate the usage in detail in the sections on PDA and GraphEM workflows.

Table 10. The essential attributes and methods of cfr.ReconRes.

Attributes Description Methods Description

paths The paths of the reconstruction netCDF files. load() Load the reconstruction files.

recons The dictionary of reconstruction objects. valid() Perform validation against given targets.

da The dictionary of reconstructions in xarray.DataArray. plot_valid() Visualize the validation.

5 cfr’s PDA workflow

In this section, we illustrate the cfr workflow (Fig. 5) with a reconstruction experiment taking the last millennium reanal-

ysis (LMR, Hakim et al., 2016; Tardif et al., 2019) paleoclimate data assimilation (PDA) approach. A similar pseudoproxy260

reconstruction experiment can be accessed at https://fzhu2e.github.io/cfr/notebooks/pp2k-ppe-pda.html (Zhu et al., 2023c).

The task here is to assimilate tropical coral records and reconstruct the boreal winter (December-February, DJF) surface air

temperature field, which can be used to calculate the El Niño/Southern Oscillation (ENSO) indices (NINO3.4 in this example)

as the surface air temperature is close enough to the sea surface temperature in ocean areas. The “iCESM1” last millennium

simulation (Brady et al., 2019) is utilized as the model prior, and the coral records from the PAGES 2k Phase 2 database265

(PAGES 2k Consortium, 2017) are used as the observations to update the prior. NASA Goddard’s Global Surface Temperature

Analysis (GISTEMP) (Lenssen et al., 2019) combining land surface air temperatures primarily from the GHCN-M version 4

(Menne et al., 2018) with the ERSSTv5 sea surface temperature analysis (Huang et al., 2017) is used as the calibration target

for the PSMs. Finally, the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 3 (Poli et al., 2016) and “BC09”

NINO3.4 reanalysis (Bunge and Clarke, 2009) are used as the validation target for the posterior, i.e., the reconstruction.270

15

https://doi.org/10.5194/egusphere-2023-2098
Preprint. Discussion started: 26 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 [2] res.recons[‘nino3.4’].compare(ref)

CFR/PDA Workflow
job = ReconJob()

ProxyRecord

ProxyDatabase
job.proxydb

ClimateField
job.prior

ClimateField
job.obs

res = ReconRes(dirpath)

EnKF
job.da_solver

Linear
Bilinear

…
(PSMs)

ClimateField
res.recons[‘tas’]

EnsTS
res.recons[‘nino3.4’]

[1] job.load_proxydb()
[2] job.filter_proxydb()
[3] job.annualize_proxydb()

[4] job.load_clim(‘prior’)

[5] job.load_clim(‘obs’)

 [6] job.calib_psms()

 [7] job.forward_psms()

[8] job.annualize_clim(‘prior’)
[9] job.regrid_clim(‘prior’)
[10] job.crop_clim(‘prior’)

 [11] job.run_da_mc(save_dirpath)

 [1] res.load([‘nino3.4’, ‘tas’])

 [3] res.recons[‘tas’].compare(ref)

Figure 5. The cfr workflow for the last millennium reanalysis (LMR, Hakim et al., 2016; Tardif et al., 2019) paleoclimate data assimilation

(PDA) framework.
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5.1 Load the proxy records, model simulations, and instrumental observations.

First of all, we import the cfr package and create a ReconJob object named job.

import cfr

job = cfr.ReconJob()

Next, we load the PAGES2k proxy database (PAGES 2k Consortium, 2017) from the cloud and pick the tropical coral records

by calling the filter_proxydb()method, then annualize them to be boreal winter average by calling the annualize_proxydb()

method:275

job.load_proxydb('PAGES2kv2')

job.filter_proxydb(by='ptype', keys=['coral'])

job.annualize_proxydb(months=[12, 1, 2], ptypes=['coral'])

Now we load the model simulated prior “iCESM1” (Brady et al., 2019) and the instrumentally observed climate data GIS-

TEMP (Lenssen et al., 2019) by calling the load_clim() method.

job.load_clim(tag='prior', path_dict={'tas': 'iCESM_past1000historical/tas'}, anom_period=(1951, 1980))

job.load_clim(tag='obs', path_dict={'tas': 'gistemp1200_GHCNv4_ERSSTv5'}, anom_period=(1951, 1980),

rename_dict={'tas': 'tempanomaly'})

Here, the tag argument is used to specify whether the loaded climate data will be used as prior or observation. The

rename_dict argument is used to map variable names if the netCDF file does not name a variable as we assumed internally in

cfr. For instance, we assume ‘lat‘ for latitude, ‘lon‘ for longitude, and ‘time‘ for the temporal dimension. The anom_period280

argument specifies against which time period we will calculate the anomly.

5.2 Calibrate and forward the PSMs.

With the loaded proxy data, climate simulation, and instrumental observation, we are ready to calibrate the proxy system models

for each proxy record by calling the calib_psms() method. For coral records, we use the univariate linear regression model

Linear as defined by the ptype_psm_dict argument. Similarly, the ptype_season_dict argument and the calib_period285

argument specify the season and timespan (in year) for calibration, respectively.

job.calib_psms(

ptype_psm_dict={'coral.d18O': 'Linear', 'coral.calc': 'Linear', 'coral.SrCa': 'Linear'},

ptype_season_dict={'coral.d18O': [12, 1, 2], 'coral.calc': [12, 1, 2], 'coral.SrCa': [12, 1, 2]},

calib_period=(1850, 2015))

For records whose corresponding PSM is successfully calibrated, a “calibrated” tag is added to the record to facilitate filtering

later.

Once the PSMs are calibrated, we can launch them by simply calling the forward_psms() method.

job.forward_psms()
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5.3 Define the season, resolution, and domain of the reconstruction.290

Now we annualize the prior by calling the annualize_clim() method, and specify on which resolution and domain we would

like to conduct the reconstruction by calling the regrid_clim() and crop_clim() method.

job.annualize_clim(tag='prior', months=[12, 1, 2])

job.regrid_clim(tag='prior', nlat=42, nlon=63)

job.crop_clim(tag='prior', lat_min=-35, lat_max=35)

Here we annualize the prior to boreal winter, and regrid the field to a global grid with 42 latitudes and 63 longitudes, and then

crop the domain to be within the 35◦S to 35◦N band where the corals are located.

5.4 Conduct the Monte-Carlo iterations of the data assimilation steps.295

Once the pre-processing is complete, we are ready to conduct the data assimilation step. We call the run_da_mc() method

to perform Monte-Carlo iterations of the EnKF assimilation steps. The argument save_dirpath specifies the directory path

where we store the reconstruction results, and the argument recon_seeds specfiy the seed for randomization for each Monte-

Carlo iteration.

job.run_da_mc(save_dirpath='./recons/lmr-real-pages2k', recon_seeds=list(range(1, 11)))

5.5 Validate the reconstruction.300

Once the Monte-Carlo iterations are done, we should have several netCDF files stored in the specified directory, and we can

initiate a ReconRes object by specifying the directory path, and load the results by calling the load() method.

res = cfr.ReconRes('./recons/lmr-real-pages2k')

res.load(['nino3.4', 'tas'])

Note that the variable names listed in the load() method are predefined. 'nino3.4' refers to the NINO3.4 index and the

reconstructed ensemble time series will be formed as a EnsTS object. 'tas' refers to the surface air temperature field and

the ensemble mean will be formed as a ClimateField object. These two objects will be organized in a dictionary named305

res.recons, and their original xarray.DataArray forms will be organized in a dictionary named res.da for more universal

purposes.

To evaluate the reconstruction skill of the surface air temperature field, we load a reference target named “20CR” (Poli et al.,

2016), and we validate both the prior and the posterior res.recons['tas'] against 20CR by calling the compare() method

over the 1874-2000 CE timespan, which returns another ClimateField object, and we are able to visualize it by calling its310

plot() method.

target = cfr.ClimateField().fetch('20CRv3/tas', vn='air').rename('tas').get_anom((1951, 1980))

target = target.annualize(months=[12, 1, 2]).crop(lat_min=-35, lat_max=35)
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# validate the prior against 20CR

stat = 'corr'

valid_fd = job.prior['tas'].compare(target, stat=stat, timespan=(1874, 2000))

fig, ax = valid_fd.plot(

title=f'{stat}(prior, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-32, 32, 0, 360), plot_cbar=False)

# validate the reconstruction against 20CR

valid_fd = res.recons['tas'].compare(target, stat=stat, timespan=(1874, 2000))

valid_fd.plot_kwargs.update({'cbar_orientation': 'horizontal', 'cbar_pad': 0.1})

fig, ax = valid_fd.plot(

title=f'{stat}(prior, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-32, 32, 0, 360),

plot_proxydb=True, proxydb=job.proxydb.filter(by='tag', keys=['calibrated']), plot_proxydb_lgd=True,

proxydb_lgd_kws={'loc': 'lower left', 'bbox_to_anchor': (1, 0)})

With the above code lines, we get Fig. 6 top and middle. The top shows the map of correlation between the prior and 20CR,

while the middle shows that between the posterior/reconstruction and 20CR, and it indicates that the reconstruction is working

as expected, boosting the mean correlation from 0.07 to 0.39.

To evaluate the reconstruction skill of the NINO3.4 index, we load a reference target named “BC09” (Bunge and Clarke,315

2009), and we validate res.recons['nino3.4'] against BC09 by calling the compare() method, which returns another

EnsTS object, and we are able to visualize it by calling its plot_qs() method.

bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])

fig, ax = res.recons['nino3.4'].compare(bc09, timespan=(1874, 2000)).plot_qs()

ax.set_xlim(1600, 2000)

ax.set_ylabel('NINO3.4 [K]')

The above code lines yield Fig. 6 bottom, and it indicates the reconstruction skill over the instrumental period is remarkably

high, with correlation coefficient r = 0.81 and the coefficient of efficiency CE = 0.58.
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Figure 6. Validation of the reconstruction taking the paleoclimate data assimilation approach. (top) The correlation map between the prior

filed and the observation target (Poli et al., 2016). (middle) The correlation map between the reconstruction median field and the observation

target. (bottom) The correlation (r) and coefficient of efficiency (CE) between the reconstructed NINO3.4 median series and the BC09

reanalysis (Bunge and Clarke, 2009).
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6 cfr’s GraphEM workflow320

In this section, we illustrate the cfr workflow (Fig. 7) for GraphEM (Section 3.2) with a similar reconstruction experiment

setup that we presented above for the illustration of the PDA workflow. Another similar pseudoproxy reconstruction experiment

can be accessed at https://fzhu2e.github.io/cfr/notebooks/pp2k-ppe-graphem.html (Zhu et al., 2023c).

 [2] res.recons[‘nino3.4’].compare(ref)

CFR/GraphEM Workflow
job = ReconJob()

ProxyRecord

ProxyDatabase
job.proxydb

ClimateField
job.obs

res = ReconRes(dirpath)

GraphEM
job.graphem_params
job.graphem_solver

ClimateField
res.recons[‘tas’]

EnsTS
res.recons[‘nino3.4’]

[1] job.load_proxydb()
[2] job.filter_proxydb()
[3] job.annualize_proxydb()

[4] job.load_clim(‘obs’)
[5] job.annualize_clim(‘obs’)
[6] job.regrid_clim(‘obs’)
[7] job.crop_clim(‘obs’)

[8] job.prep_graphem()

 [9] job.run_graphem(save_dirpath)

 [1] res.load([‘nino3.4’, ‘tas’])

 [3] res.recons[‘tas’].compare(ref)

Figure 7. The cfr workflow for the Graphical Expectation-Maximization (GraphEM, Guillot et al., 2015) algorithm.
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6.1 Load the proxy records and instrumental observations.

The cfr workflow for GraphEM is very similar to that for PDA. The first part is loading and preprocessing the required data,325

including the PAGES2k proxy records (PAGES 2k Consortium, 2017) and the GISTEMP instrumental observation (Lenssen

et al., 2019). The only difference compared to the PDA workflow is that no model prior is needed. Due to the data sparsity

requirement of the GraphEM method, we set a relatively small domain around the NINO3.4 region for the reconstruction

(20◦S-20◦N, 150◦E-100◦W) in this specific experiment.

import cfr

job = cfr.ReconJob()

# load and preprocess the proxy database

job.load_proxydb('PAGES2kv2')

job.filter_proxydb(by='ptype', keys=['coral'])

job.annualize_proxydb(months=[12, 1, 2], ptypes=['coral'])

# load the instrumental observation dataset

job.load_clim(tag='obs', path_dict={'tas': 'gistemp1200_GHCNv4_ERSSTv5'},

anom_period=(1951, 1980), rename_dict={'tas': 'tempanomaly'})

# define the season, resolution, and domain of the reconstruction

job.annualize_clim(tag='obs', months=[12, 1, 2])

job.regrid_clim(tag='obs', nlat=42, nlon=63)

job.crop_clim(tag='obs', lat_min=-20, lat_max=20, lon_min=150, lon_max=260)

6.2 Prepare the GraphEM solver330

Compare to PDA, the preparation of the solver is much easier for GraphEM. Here, we set the calibration period to be over

1901-2000 CE, while the reconstruction period to be over 1871-2000 CE. We also process the proxy database to be more

uniform by keeping only the records that span the full reconstruction time period (uniform_pdb=True) to make the GraphEM

algorithm more efficient.

job.prep_graphem(recon_period=(1871, 2000), calib_period=(1901, 2000), uniform_pdb=True)

6.3 Run the GraphEM solver.335

We run the GraphEM solver with the “hybrid” approach (Section 3.2) with a cutoff radius (cutoff_radius) of 1500 km for

the neighborhood graph, and 3% target sparsity of the in-field part (sp_FF) and 4% target sparsity of the climate field/proxy

part (sp_FP) of the inverse covariance matrix for the GLASSO method. For more details about these parameters, please refer

to Guillot et al. (2015).
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job.run_graphem(

save_dirpath='./recons/graphem-real-pages2k',

graph_method='hybrid', cutoff_radius=1500, sp_FF=3, sp_FP=4)

6.4 Validate the reconstruction.340

Similar to the PDA reconstruction experiment, we validate the reconstructed surface temperature field against the “20CR”

reanalysis (Poli et al., 2016) and the reconstructed NINO3.4 index against the “BC09” reanalysis (Bunge and Clarke, 2009),

but only over the 1874-1900 CE timespan as the reconstruction over the calibration period (1901-2000 CE) will be identical to

the GISTEMP observation (Fig. 8).

res = cfr.ReconRes('./recons/graphem-real-pages2k')

res.load(['nino3.4', 'tas'], verbose=True)

# validate the reconstructed surface temperature field against 20CR

target = cfr.ClimateField().fetch('20CRv3/tas', vn='air').rename('tas').get_anom((1951, 1980))

target = target.annualize(months=[12, 1, 2]).crop(lat_min=-25, lat_max=25, lon_min=120, lon_max=280)

stat = 'corr'

valid_fd = res.recons['tas'].compare(target, stat=stat, timespan=(1874, 1900))

valid_fd.plot_kwargs.update({'cbar_orientation': 'horizontal', 'cbar_pad': 0.1})

fig, ax = valid_fd.plot(

title=f'{stat}(recon, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-25, 25, 0, 360),

plot_cbar=True, plot_proxydb=True, proxydb=job.proxydb, plot_proxydb_lgd=True,

proxydb_lgd_kws={'loc': 'lower left', 'bbox_to_anchor': (1, 0)})

# validate the reconstructed NINO3.4 against BC09

bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])

fig, ax = res.recons['nino3.4'].compare(bc09, timespan=(1874, 1900)).plot(label='recon')

ax.set_xlim(1800, 2000)

ax.set_ylim(-3, 4)

ax.set_ylabel('NINO3.4 [K]')

It can be seen that the reconstruction skill is overall comparable to that of the PDA approach, with the limitation that345

the reconstruction domain and time interval are restricted mainly due to the proxy data sparsity. It is also worth noting that

the GraphEM-based reconstruction is not in ensemble. In future versions, approaches such as block bootstrapping will be

implemented for uncertainty quantification, following Guillot et al. (2015).
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Figure 8. Validation of the reconstruction taking the Graphical Expectation Maximization (GraphEM) approach. (top) The correlation map

between the reconstruction median field and the observation target (Poli et al., 2016). (bottom) The correlation (r) and coefficient of efficiency

(CE) between the reconstructed NINO3.4 median series and the BC09 reanalysis (Bunge and Clarke, 2009).

6.5 Comparison to PDA

cfr enables convenient inter-methodological comparisons of multiple reconstructions. Here, we illustrate how to conduct an350

“apples-to-apples” comparison of the reconstructions generated by the GraphEM and PDA approaches.

First, we create ReconRes objects for the two reconstructions and load the validation targets “20CR” (Menne et al., 2018)

and “BC09” (Bunge and Clarke, 2009).

res_graphem = cfr.ReconRes('./recons/graphem-real-pages2k')

res_lmr = cfr.ReconRes('./recons/lmr-real-pages2k')

tas_20CRv3 = cfr.ClimateField().fetch('20CRv3/tas', vn='air').rename('tas').get_anom((1951, 1980))

tas_20CRv3 = tas_20CRv3.annualize(months=[12, 1, 2]).crop(lat_min=-20, lat_max=20, lon_min=150, lon_max=260)

nino34_bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])
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Then we call the valid() method for the reconstructions to compute the validation statistics (correlation and coefficient of

efficiency) against the same set of validation targets over the same domain (20◦S-20◦N, 150◦E-100◦W) and the same timespan355

1874-1900 CE.

res_graphem.valid(

target_dict={'tas': tas_20CRv3, 'nino3.4': nino34_bc09},

timespan=(1874, 1900), stat=['corr', 'CE'])

res_lmr.valid(

target_dict={'tas': tas_20CRv3, 'nino3.4': nino34_bc09},

timespan=(1874, 1900), stat=['corr', 'CE'])

Finally, we call the plot_valid() method to visualize the validation results (Fig. 9). It can be seen that the GraphEM and

PDA approaches show overall comparable skills with a consistent spatiotemporal validation setup. Interestingly, compared to

the PDA approach, the reconstructed surface temperature field generated by the GraphEM approach shows a better skill over

the western Pacific region, leading to a slightly better reconstruction skill for NINO3.4, while the reconstruction skill over the360

north center Pacific region is worse.

fig, ax = res_graphem.plot_valid(

target_name_dict={'tas': '20CRv3', 'nino3.4': 'BC09'},

recon_name_dict={'tas': 'GraphEM/tas', 'nino3.4': 'NINO3.4 [K]'},

valid_fd_kws=dict(projection='PlateCarree', latlon_range=(-20, 20, 150, 256), plot_cbar=True),

valid_ts_kws=dict(xlim=(1870, 1900), ylim=(-3, 4)))

fig, ax = res_lmr.plot_valid(

target_name_dict={'tas': '20CRv3', 'nino3.4': 'BC09'},

recon_name_dict={'tas': 'PDA/tas', 'nino3.4': 'NINO3.4 [K]'},

valid_fd_kws=dict(projection='PlateCarree', latlon_range=(-20, 20, 150, 256), plot_cbar=True),

valid_ts_kws=dict(xlim=(1870, 1900), ylim=(-3, 4)))
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Figure 9. Comparison of the reconstructions generated by the GraphEM and PDA approaches against the same validation targets “20CRv3”

(Menne et al., 2018) and “BC09” (Bunge and Clarke, 2009) over the same domain (20◦S-20◦N, 150◦E-100◦W) and the same timespan

1874-1900 CE.

7 Summary

Climate field reconstruction provides spatial details about past climate, and the cfr package makes this process intuitive,

modular, and efficient for Python users. In particular, cfr enables a sophisticated laboratory for comparisons of different

climate field reconstruction methods, which is of critical importance to better estimate and interpret reconstructions, given365

their sensitivity to multiple error sources rooted in the climate model prior, proxy records, proxy system modeling, and the
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reconstruction algorithm itself. In addition, cfr is a handy toolbox for paleoclimate data analysis and visualization, lowering

the bar for processing and visualizing proxy records, climate model output, and instrumental observations.

As an open-source and community-based code, future versions of the package will combine contributions from the core

development team and the community to support more CFR methods such as an online ensemble Kalman filter (Perkins and370

Hakim, 2017, 2021), particle filters (Goosse et al., 2010; Dubinkina et al., 2011; Dubinkina and Goosse, 2013; Liu et al.,

2017), a wider array of PSMs for deep-time reconstructions, along with more postprocessing, visualization, and validation

functionalities, catalyzing open and reproducible paleoclimate research. We hope this ethos invites more replicability and

reproducibility in paleoclimate reconstructions, thereby deepening confidence in our knowledge of past climates.

Code and data availability. The current version of the cfr codebase is available at: https://github.com/fzhu2e/cfr under the BSD-3 Clause375

licence. Its documentation can be accessed at: https://fzhu2e.github.io/cfr/. The exact version used to produce the results shown in this paper

is archived on Zenodo at: https://zenodo.org/record/8347162 (Zhu et al., 2023c).

All datasets leveraged in the examples illustrated in this study can be automatically fetched from the cloud with cfr’s remote-data-loading

feature, without the hassle of mannually searching and downloading, including:

– The PAGES 2k phase 2 global multiproxy database (PAGES 2k Consortium, 2017) hosted on the National Center for Environmental380

Information’s World Data Service for Paleoclimatology (https://www.ncei.noaa.gov/access/paleo-search/study/21171). A reorganized

copy for the remote-data-loading purpose is hosted on Zenodo (https://zenodo.org/record/8367746) (Zhu, 2023) and Github (https:

//github.com/fzhu2e/cfr-data/raw/main/pages2kv2.json).

– The “pseudoPAGES2k” pseudoproxy dataset (Zhu et al., 2023a) hosted on Zenodo (https://doi.org/10.5281/zenodo.8173256) (Zhu

et al., 2023b) and Github (https://github.com/fzhu2e/paper-pseudoPAGES2k).385

– The “iCESM1” last millennium simulation (Brady et al., 2019) hosted on a data server at University of Washington by Rorbert Tardif

(https://atmos.washington.edu/~rtardif/LMR/prior).

– The NASA Goddard’s Global Surface Temperature Analysis (GISTEMP) (Lenssen et al., 2019) combining land surface air tempera-

tures primarily from the GHCN-M version 4 (Menne et al., 2018) with the ERSSTv5 sea surface temperature analysis (Huang et al.,

2017) hosted on NASA’s website (https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz).390

– The NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 3 (Poli et al., 2016) hosted on NOAA’s website (https://

downloads.psl.noaa.gov/Datasets/20thC_ReanV3).

– The “BC09” NINO3.4 reanalysis (Bunge and Clarke, 2009) hosted on Zenodo (https://zenodo.org/record/8367746) (Zhu, 2023) and

Github (https://github.com/fzhu2e/cfr-data/raw/main/BC09_NINO34.csv) for the remote-data-loading purpose.
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